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Recognizing faces like humans
Behrooz Kamgar-Parsi, Wallace Lawson, and
Behzad Kamgar-Parsi

A new approach to facial identification makes automated surveillance
easier.

Humans are extremely powerful in recognizing faces that they
see often. During encounters, we either recognize a face or re-
ject it as unfamiliar. Praise for this ability still echoes in the
literature:1 “The only system that seems to work well under
challenging conditions is the human visual system.” While hu-
mans do this routinely, a particularly challenging aspect of
face-recognition research is the question of rejecting previously
unseen faces as unfamiliar. A system with this ability has
long been desired:2 “The similarity measure used in a face-
recognition system should be designed so that humans’ ability
to perform face recognition and recall are imitated as closely as
possible by the machine.”

The prevailing approach is based on matching and ranking
images. Given a test image, a face-recognition algorithm finds
its closest match in a database of stored images based on some
similarity measure. In ‘closed-world’ applications, where the test
image/person is guaranteed to be in the database, if the closest
match is found correctly, the test image/person will be identi-
fied correctly. By contrast, in ‘open-world’ applications, where
the test image/person may not be in the database (as might oc-
cur with watchlist surveillance, where we are interested only in
recognizing ‘wanted’ subjects), mis-identification may occur re-
gardless of the outcome of the search.

A threshold could be used to decide whether the best match
is a correct match. However, establishing the proper threshold
value that works well for previously unseen data is very dif-
ficult. We have developed an approach that uses an artificial
neural network to replicate the human ability to recognize faces.
In contrast to most existing approaches, our approach is partic-
ularly useful for open-world applications.

Much like humans, our face-recognition algorithm can
recognize a certain number of pre-specified ‘target persons’
while rejecting everyone else. In a surveillance application, those
individuals may be people on a watch list, and in an access-
control application they will be people with authority. Humans

Figure 1. Jennifer Aniston, the leftmost picture, is morphed towards
Angelina Jolie, the rightmost picture. The second left picture is still
recognizable as Jennifer (positive borderline exemplar, blue dots), while
the next picture is not (negative borderline exemplar, red dots). Like-
wise, morphing Jennifer’s image towards many other people will gen-
erate sufficient landmarks to identify and enclose the space belonging
to Jennifer (shaded area).

do not match or rank faces/images as a precursor to recogni-
tion. Our approach is not based on ranking images, but rather
on identifying and enclosing the region in the human face space
that belongs to the target person. Consequently, at the test phase,
if the image is projected inside that region, it will be identified as
the target, but otherwise rejected.

During training, the region is identified with the help of a hu-
man critic. We take the image of the target person and morph
it towards different facial images from a large database until it
becomes borderline acceptable, i.e., significantly different from
the target but still recognizable as such (according to the human
critic). Next, we morph it even further until it becomes border-
line unacceptable, i.e., with some resemblance to the target but
not enough to be recognizable as that person.3 Figure 1 illus-
trates the process.

Typically, a human critic would need to examine morphed
images of the target person compared with only some 10 to 20
images from the database to determine the average morphing
percentages for the borderline acceptable and unacceptable ex-
emplars. (We have found that different human critics do not
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10.1117/2.1201002.002588 Page 2/2

produce significantly different morphing percentages with re-
gard to a given face.) Applying those percentages and using im-
ages in the database, the computer will automatically generate
and label a sufficiently large training set. In practice, it is ade-
quate if most of the generated exemplars are projected where
intended because the neural net will fit hyperplanes to the gen-
erated data. For greater accuracy the database may be divided
into subgroups according to gender, race, and age. The human
critic may pick slightly different morphed percentages for each
subgroup. Next, a three-layer neural network is trained on the
two sets of positive and negative exemplars.

Over the past several years, we have collected several thou-
sand facial images at the Naval Research Laboratory (NRL). Fur-
thermore, we have made extensive use of the Face Recognition
Grand Challenge dataset4 as well as other databases. Extensive
algorithmic experiments involving 10 target persons under dif-
ferent indoor lighting conditions and over 10,000 nontarget im-
ages have indicated a false accept (false alarm) rate of one in
100,000. The false reject error rate is, however, more difficult to
assess. In our experiments such errors appeared to be almost all
due to head poses and expressions outside the expected range,
e.g., looking far to the side, etc. Of course, in real-life applications
of automatic surveillance, cameras will be installed at many dif-
ferent locations, and each is likely to capture more than one im-
age per person. Therefore, it may be of no consequence if the
target person is missed in one image or by one camera. That is,
the true accept rate does not have to be 100%, but the false accept
rate must be extremely low.

The history of face recognition, however, indicates that it is
considerably more challenging to obtain a good recognition rate
in real-life scenarios, i.e., live systems facing people in person
(with many inherent unpredictabilities), rather than algorithms
recognizing their pre-recorded facial images. We have been con-
ducting a large-scale system test by taking the system to differ-
ent buildings (under different lighting conditions) at the NRL.
So far, close to 200 people have participated in live experiments.
The system has recognized those on its watch list while rejecting
all others with no error. The next steps would involve expanded
testing, continuation of our effort to further improve the quality
of automated morph images, and incorporating age progression.
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